Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Prediction of $\textrm{CO}_2$ Adsorption in Nano-Pores with Graph Neural Networks (2209.07567v1)

Published 22 Aug 2022 in cond-mat.mtrl-sci and cs.LG

Abstract: We investigate the graph-based convolutional neural network approach for predicting and ranking gas adsorption properties of crystalline Metal-Organic Framework (MOF) adsorbents for application in post-combustion capture of $\textrm{CO}_2$. Our model is based solely on standard structural input files containing atomistic descriptions of the adsorbent material candidates. We construct novel methodological extensions to match the prediction accuracy of classical machine learning models that were built with hundreds of features at much higher computational cost. Our approach can be more broadly applied to optimize gas capture processes at industrial scale.

Citations (1)

Summary

We haven't generated a summary for this paper yet.