Papers
Topics
Authors
Recent
2000 character limit reached

Self-Supervised Texture Image Anomaly Detection By Fusing Normalizing Flow and Dictionary Learning

Published 15 Sep 2022 in cs.CV | (2209.07005v2)

Abstract: A common study area in anomaly identification is industrial images anomaly detection based on texture background. The interference of texture images and the minuteness of texture anomalies are the main reasons why many existing models fail to detect anomalies. We propose a strategy for anomaly detection that combines dictionary learning and normalizing flow based on the aforementioned questions. The two-stage anomaly detection approach already in use is enhanced by our method. In order to improve baseline method, this research add normalizing flow in representation learning and combines deep learning and dictionary learning. Improved algorithms have exceeded 95$\%$ detection accuracy on all MVTec AD texture type data after experimental validation. It shows strong robustness. The baseline method's detection accuracy for the Carpet data was 67.9%. The article was upgraded, raising the detection accuracy to 99.7%.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.