Papers
Topics
Authors
Recent
2000 character limit reached

State-dressed local operators in the AdS/CFT correspondence

Published 14 Sep 2022 in hep-th and gr-qc | (2209.06845v2)

Abstract: We examine aspects of locality in perturbative quantum gravity and how information can be localized in subregions. In the framework of AdS/CFT, we consider the algebra of single-trace operators defined in a short time band. We conjecture that, if the state has large energy variance, then this algebra will have a commutant in the 1/N expansion. We provide evidence for this by identifying operators that commute with the conformal field theory Hamiltonian to all orders in 1/N, thus resolving an apparent tension with the gravitational Gauss law. The bulk interpretation is that these operators are gravitationally dressed with respect to features of the state rather than the boundary. We comment on observables in certain black hole microstates and the gravitational dressing in the island proposal.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. R. Haag and D. Kastler, An Algebraic approach to quantum field theory, J. Math. Phys. 5, 848 (1964).
  2. H. Araki, Type of von Neumann Algebra Associated with Free Field, Progress of Theoretical Physics 32, 956 (1964), https://academic.oup.com/ptp/article-pdf/32/6/956/5311286/32-6-956.pdf .
  3. D. Buchholz, PRODUCT STATES FOR LOCAL ALGEBRAS, Commun. Math. Phys. 36, 287 (1974).
  4. G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308, 284 (1993), arXiv:gr-qc/9310026 .
  5. L. Susskind, The World as a hologram, J. Math. Phys. 36, 6377 (1995), arXiv:hep-th/9409089 .
  6. J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998), arXiv:hep-th/9711200 .
  7. G. ’t Hooft, On the Quantum Structure of a Black Hole, Nucl. Phys. B 256, 727 (1985).
  8. L. Susskind, L. Thorlacius, and J. Uglum, The Stretched horizon and black hole complementarity, Phys. Rev. D 48, 3743 (1993), arXiv:hep-th/9306069 .
  9. S. B. Giddings, Nonviolent nonlocality, Phys. Rev. D 88, 064023 (2013), arXiv:1211.7070 [hep-th] .
  10. R. Bousso, Complementarity Is Not Enough, Phys. Rev. D 87, 124023 (2013), arXiv:1207.5192 [hep-th] .
  11. K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 10, 212, arXiv:1211.6767 [hep-th] .
  12. E. Verlinde and H. Verlinde, Black Hole Entanglement and Quantum Error Correction, JHEP 10, 107, arXiv:1211.6913 [hep-th] .
  13. J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61, 781 (2013), arXiv:1306.0533 [hep-th] .
  14. G. Penington, Entanglement wedge reconstruction and the information paradox, Journal of High Energy Physics 2020, 1 (2020).
  15. A. Komar, Construction of a complete set of independent observables in the general theory of relativity, Phys. Rev. 111, 1182 (1958).
  16. P. G. Bergmann and A. B. Komar, Poisson brackets between locally defined observables in general relativity, Phys. Rev. Lett. 4, 432 (1960).
  17. B. DeWitt, Gravitation: An Introduction to Current Research (Edited by L. Witten) (Wiley, 1962) pp. 266–381.
  18. C. G. Torre, Gravitational observables and local symmetries, Phys. Rev. D 48, R2373 (1993), arXiv:gr-qc/9306030 .
  19. D. Marolf, Quantum observables and recollapsing dynamics, Class. Quant. Grav. 12, 1199 (1995), arXiv:gr-qc/9404053 .
  20. I. Khavkine, Local and gauge invariant observables in gravity, Class. Quant. Grav. 32, 185019 (2015), arXiv:1503.03754 [gr-qc] .
  21. S. B. Giddings, D. Marolf, and J. B. Hartle, Observables in effective gravity, Phys. Rev. D 74, 064018 (2006), arXiv:hep-th/0512200 .
  22. W. Donnelly and S. B. Giddings, Diffeomorphism-invariant observables and their nonlocal algebra, Phys. Rev. D 93, 024030 (2016b), [Erratum: Phys.Rev.D 94, 029903 (2016)], arXiv:1507.07921 [hep-th] .
  23. D. N. Page and W. K. Wootters, EVOLUTION WITHOUT EVOLUTION: DYNAMICS DESCRIBED BY STATIONARY OBSERVABLES, Phys. Rev. D 27, 2885 (1983).
  24. K. V. Kuchar, Time and interpretations of quantum gravity, Int. J. Mod. Phys. D 20, 3 (2011).
  25. C. J. Isham, Canonical quantum gravity and the problem of time, NATO Sci. Ser. C 409, 157 (1993), arXiv:gr-qc/9210011 .
  26. A. Almheiri, X. Dong, and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP 04, 163, arXiv:1411.7041 [hep-th] .
  27. R. C. Myers, J. Rao, and S. Sugishita, Holographic Holes in Higher Dimensions, JHEP 06, 044, arXiv:1403.3416 [hep-th] .
  28. M. Headrick, R. C. Myers, and J. Wien, Holographic Holes and Differential Entropy, JHEP 10, 149, arXiv:1408.4770 [hep-th] .
  29. K. Papadodimas and S. Raju, Black Hole Interior in the Holographic Correspondence and the Information Paradox, Phys. Rev. Lett. 112, 051301 (2014a), arXiv:1310.6334 [hep-th] .
  30. K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev. D 89, 086010 (2014b), arXiv:1310.6335 [hep-th] .
  31. S. Leutheusser and H. Liu, Causal connectability between quantum systems and the black hole interior in holographic duality,   (2021a), arXiv:2110.05497 [hep-th] .
  32. S. Leutheusser and H. Liu, Emergent times in holographic duality,   (2021b), arXiv:2112.12156 [hep-th] .
  33. E. Witten, Gravity and the Crossed Product,   (2021), arXiv:2112.12828 [hep-th] .
  34. K. Skenderis and B. C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101, 081601 (2008), arXiv:0805.0150 [hep-th] .
  35. M. Botta-Cantcheff, P. Martínez, and G. A. Silva, On excited states in real-time AdS/CFT, JHEP 02, 171, arXiv:1512.07850 [hep-th] .
  36. A. Belin, A. Lewkowycz, and G. Sárosi, The boundary dual of the bulk symplectic form, Phys. Lett. B 789, 71 (2019), arXiv:1806.10144 [hep-th] .
  37. I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-A⁢d⁢S2𝐴𝑑subscript𝑆2AdS_{2}italic_A italic_d italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gravity,   (2017), arXiv:1707.02325 [hep-th] .
  38. A. Almheiri, A. Mousatov, and M. Shyani, Escaping the Interiors of Pure Boundary-State Black Holes,   (2018), arXiv:1803.04434 [hep-th] .
  39. M. Miyaji, T. Takayanagi, and T. Ugajin, Spectrum of End of the World Branes in Holographic BCFTs, JHEP 06, 023, arXiv:2103.06893 [hep-th] .
  40. I. Bena, On the construction of local fields in the bulk of AdS(5) and other spaces, Phys. Rev. D 62, 066007 (2000), arXiv:hep-th/9905186 .
  41. D. Kabat, G. Lifschytz, and D. A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83, 106009 (2011), arXiv:1102.2910 [hep-th] .
  42. D. Kabat and G. Lifschytz, CFT representation of interacting bulk gauge fields in AdS, Phys. Rev. D 87, 086004 (2013), arXiv:1212.3788 [hep-th] .
  43. A. Castro, N. Iqbal, and E. Llabrés, Wilson lines and Ishibashi states in AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT, JHEP 09, 066, arXiv:1805.05398 [hep-th] .
  44. H. Chen, J. Kaplan, and U. Sharma, AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT reconstruction with general gravitational dressings, JHEP 07, 141, arXiv:1905.00015 [hep-th] .
  45. K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence in the black hole interior, Phys. Rev. D 93, 084049 (2016), arXiv:1503.08825 [hep-th] .
  46. K. Papadodimas and S. Raju, Local Operators in the Eternal Black Hole, Phys. Rev. Lett. 115, 211601 (2015), arXiv:1502.06692 [hep-th] .
  47. J. Chakravarty, Overcounting of interior excitations: A resolution to the bags of gold paradox in AdS, JHEP 02, 027, arXiv:2010.03575 [hep-th] .
  48. More precisely, we would have to give a small smearing to the single-trace operators in order to avoid UV divergences.
  49. The spectral form factor coincides with the return amplitude for the thermofield double (TFD) state |TFD⟩\mathinner{|{{\rm TFD}}\delimiter 86414091}| roman_TFD ⟩ with H=HL+HR𝐻subscript𝐻𝐿subscript𝐻𝑅H=H_{L}+H_{R}italic_H = italic_H start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT + italic_H start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT.
  50. S. H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03, 067, arXiv:1306.0622 [hep-th] .
  51. P. Saad, S. H. Shenker, and D. Stanford, A semiclassical ramp in SYK and in gravity,   (2018), arXiv:1806.06840 [hep-th] .
  52. Operators of this type were discussed in a related context and applied to the eternal black hole in [73].
  53. Note that the correlator appearing in (20\@@italiccorr) can be written as a product of a correlator (15\@@italiccorr) and a conjugated correlator, such that the phase factor cancels and gives a time dependence following (16\@@italiccorr).
  54. For the exact operator in the island the commutator with HCFTsubscript𝐻CFTH_{\rm CFT}italic_H start_POSTSUBSCRIPT roman_CFT end_POSTSUBSCRIPT may be exactly zero, here we simply point out that there is no contradiction with perturbative diffeomorphism invariance.
  55. K. Papadodimas, A class of non-equilibrium states and the black hole interior,  (2017), arXiv:1708.06328 [hep-th] .
  56. D. Marolf, Unitarity and Holography in Gravitational Physics, Phys. Rev. D 79, 044010 (2009), arXiv:0808.2842 [gr-qc] .
  57. W. Donnelly and S. B. Giddings, How is quantum information localized in gravity?, Phys. Rev. D 96, 086013 (2017), arXiv:1706.03104 [hep-th] .
  58. W. Donnelly and S. B. Giddings, Gravitational splitting at first order: Quantum information localization in gravity, Phys. Rev. D 98, 086006 (2018), arXiv:1805.11095 [hep-th] .
  59. T. Jacobson and P. Nguyen, Diffeomorphism invariance and the black hole information paradox, Phys. Rev. D 100, 046002 (2019), arXiv:1904.04434 [gr-qc] .
  60. C. Chowdhury, O. Papadoulaki, and S. Raju, A physical protocol for observers near the boundary to obtain bulk information in quantum gravity, SciPost Phys. 10, 106 (2021), arXiv:2008.01740 [hep-th] .
  61. S. B. Giddings, On the questions of asymptotic recoverability of information and subsystems in quantum gravity, JHEP 08, 227, arXiv:2112.03207 [hep-th] .
Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.