Normalized solutions of linearly coupled Choquard system with potentials (2209.06443v1)
Abstract: In this paper, we consider the existence of solutions for the linearly coupled Choquard system with potentials \begin{align*} \left{\begin{aligned} &-\Delta u+\lambda_1 u+V_1(x)u=\mu_1(I_{\alpha}\star|u|p)|u|{p-2}u+\beta(x) v,\ &-\Delta v+\lambda_2 v+V_2(x)v=\mu_2(I_{\alpha}\star|v|q)|v|{q-2}u+\beta(x) u, \end{aligned} \right.\quad x\in \mathbb{R}N, \end{align*} under the constraint \begin{align*} \int_{\mathbb{R}N}u2dx=\xi2,~ \int_{\mathbb{R}N}v2dx=\eta2, \end{align*} where $I_{\alpha}=\frac{1}{|x|{N-\alpha}},~\alpha\in(0,N),~1+\frac{\alpha}{N}<p,~q<\frac{N+\alpha}{N-2},~\mu_1\>0,~\mu_2>0$ and $\beta(x)$ is a fixed function.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.