Papers
Topics
Authors
Recent
Search
2000 character limit reached

Prediction of the outcome of a Twenty-20 Cricket Match : A Machine Learning Approach

Published 13 Sep 2022 in cs.LG | (2209.06346v2)

Abstract: Twenty20 cricket, sometimes written Twenty-20, and often abbreviated to T20, is a short form of cricket. In a Twenty20 game the two teams of 11 players have a single innings each, which is restricted to a maximum of 20 overs. This version of cricket is especially unpredictable and is one of the reasons it has gained popularity over recent times. However, in this paper we try four different machine learning approaches for predicting the results of T20 Cricket Matches. Specifically we take in to account: previous performance statistics of the players involved in the competing teams, ratings of players obtained from reputed cricket statistics websites, clustering the players' with similar performance statistics and propose a novel method using an ELO based approach to rate players. We compare the performances of each of these feature engineering approaches by using different ML algorithms, including logistic regression, support vector machines, bayes network, decision tree, random forest.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.