Papers
Topics
Authors
Recent
2000 character limit reached

Self-supervised Multi-Modal Video Forgery Attack Detection

Published 13 Sep 2022 in cs.MM | (2209.06345v2)

Abstract: Video forgery attack threatens the surveillance system by replacing the video captures with unrealistic synthesis, which can be powered by the latest augment reality and virtual reality technologies. From the machine perception aspect, visual objects often have RF signatures that are naturally synchronized with them during recording. In contrast to video captures, the RF signatures are more difficult to attack given their concealed and ubiquitous nature. In this work, we investigate multimodal video forgery attack detection methods using both vision and wireless modalities. Since wireless signal-based human perception is environmentally sensitive, we propose a self-supervised training strategy to enable the system to work without external annotation and thus can adapt to different environments. Our method achieves a perfect human detection accuracy and a high forgery attack detection accuracy of 94.38% which is comparable with supervised methods.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.