Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Categorical and K-theoretic Donaldson-Thomas theory of $\mathbb{C}^3$ (part II) (2209.05920v2)

Published 13 Sep 2022 in math.AG and math.RT

Abstract: Quasi-BPS categories appear as summands in semiorthogonal decompositions of DT categories for Hilbert schemes of points in the three dimensional affine space and in the categorical Hall algebra of the two dimensional affine space. In this paper, we prove several properties of quasi-BPS categories analogous to BPS sheaves in cohomological DT theory. We first prove a categorical analogue of Davison's support lemma, namely that complexes in the quasi-BPS categories for coprime length and weight are supported over the small diagonal in the symmetric product of the three dimensional affine space. The categorical support lemma is used to determine the torsion-free generator of the torus equivariant K-theory of the quasi-BPS category of coprime length and weight. We next construct a bialgebra structure on the torsion free equivariant K-theory of quasi-BPS categories for a fixed ratio of length and weight. We define the K-theoretic BPS space as the space of primitive elements with respect to the coproduct. We show that all localized equivariant K-theoretic BPS spaces are one dimensional, which is a K-theoretic analogue of the computation of (numerical) BPS invariants of the three dimensional affine space.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube