Explaining Predictions from Machine Learning Models: Algorithms, Users, and Pedagogy
Abstract: Model explainability has become an important problem in ML due to the increased effect that algorithmic predictions have on humans. Explanations can help users understand not only why ML models make certain predictions, but also how these predictions can be changed. In this thesis, we examine the explainability of ML models from three vantage points: algorithms, users, and pedagogy, and contribute several novel solutions to the explainability problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.