Convergent FEM for a membrane model of liquid crystal polymer networks
Abstract: We design a finite element method (FEM) for a membrane model of liquid crystal polymer networks (LCNs). This model consists of a minimization problem of a non-convex stretching energy. We discuss properties of this energy functional such as lack of weak lower semicontinuity. We devise a discretization with regularization, propose a novel iterative scheme to solve the non-convex discrete minimization problem, and prove stability of the scheme and convergence of discrete minimizers. We present numerical simulations to illustrate convergence properties of our algorithm and features of the model.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.