Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Donkin's Tilting Module Conjecture III: New Generic Lower Bounds (2209.04675v3)

Published 10 Sep 2022 in math.RT and math.GR

Abstract: In this paper the authors consider four questions of primary interest for the representation theory of reductive algebraic groups: (i) Donkin's Tilting Module Conjecture, (ii) the Humphreys-Verma Question, (iii) whether $\operatorname{St}r \otimes L(\lambda)$ is a tilting module for $L(\lambda)$ an irrreducible representation of $p{r}$-restricted highest weight, and (iv) whether $\operatorname{Ext}{1}{G_{1}}(L(\lambda),L(\mu)){(-1)}$ is a tilting module where $L(\lambda)$ and $L(\mu)$ have $p$-restricted highest weight. The authors establish affirmative answers to each of these questions with a new uniform bound, namely $p\geq 2h-4$ where $h$ is the Coxeter number. Notably, this verifies these statements for infinitely many more cases. Later in the paper, questions (i)-(iv) are considered for rank two groups where there are counterexamples (for small primes) to these questions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.