Decomposition of the algebra of analytic functionals on a connected complex Lie group and its completions into iterated analytic smash products (2209.04192v4)
Abstract: We show that a decomposition of a complex Lie group $G$ into a semidirect product generates that of the algebra of analytic functional, ${\mathscr A}(G)$, into an analytic smash product in the sense of Pirkovskii. Also we find sufficient conditions for a semidirect product to generate similar decompositions of certain Arens-Michael completions of ${\mathscr A}(G)$. The main result: if $G$ is connected, then its linearization admits a decomposition into an iterated semidirect product (with the composition series consisting of abelian factors and a semisimple factor) that induces a decomposition of algebras in a class of completions of ${\mathscr A}(G)$ into iterated analytic smash products. Considering the extreme cases, the envelope of ${\mathscr A}(G)$ in the class of all Banach algebras (aka the Arens-Michael envelope) and the envelope in the class Banach PI-algebras (a new concept that is introduced in this article), we decompose, in particular, these envelopes into iterated analytic smash products.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.