Papers
Topics
Authors
Recent
Search
2000 character limit reached

Online Low Rank Matrix Completion

Published 8 Sep 2022 in cs.LG and stat.ML | (2209.03997v2)

Abstract: We study the problem of {\em online} low-rank matrix completion with $\mathsf{M}$ users, $\mathsf{N}$ items and $\mathsf{T}$ rounds. In each round, the algorithm recommends one item per user, for which it gets a (noisy) reward sampled from a low-rank user-item preference matrix. The goal is to design a method with sub-linear regret (in $\mathsf{T}$) and nearly optimal dependence on $\mathsf{M}$ and $\mathsf{N}$. The problem can be easily mapped to the standard multi-armed bandit problem where each item is an {\em independent} arm, but that leads to poor regret as the correlation between arms and users is not exploited. On the other hand, exploiting the low-rank structure of reward matrix is challenging due to non-convexity of the low-rank manifold. We first demonstrate that the low-rank structure can be exploited using a simple explore-then-commit (ETC) approach that ensures a regret of $O(\mathsf{polylog} (\mathsf{M}+\mathsf{N}) \mathsf{T}{2/3})$. That is, roughly only $\mathsf{polylog} (\mathsf{M}+\mathsf{N})$ item recommendations are required per user to get a non-trivial solution. We then improve our result for the rank-$1$ setting which in itself is quite challenging and encapsulates some of the key issues. Here, we propose \textsc{OCTAL} (Online Collaborative filTering using iterAtive user cLustering) that guarantees nearly optimal regret of $O(\mathsf{polylog} (\mathsf{M}+\mathsf{N}) \mathsf{T}{1/2})$. OCTAL is based on a novel technique of clustering users that allows iterative elimination of items and leads to a nearly optimal minimax rate.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.