Papers
Topics
Authors
Recent
2000 character limit reached

Probabilistic risk aversion for generalized rank-dependent functions

Published 7 Sep 2022 in econ.TH and q-fin.RM | (2209.03425v2)

Abstract: Probabilistic risk aversion, defined through quasi-convexity in probabilistic mixtures, is a common useful property in decision analysis. We study a general class of non-monotone mappings, called the generalized rank-dependent functions, which includes the preference models of expected utilities, dual utilities, and rank-dependent utilities as special cases, as well as signed Choquet functions used in risk management. Our results fully characterize probabilistic risk aversion for generalized rank-dependent functions: This property is determined by the distortion function, which is precisely one of the two cases: those that are convex and those that correspond to scaled quantile-spread mixtures. Our result also leads to seven equivalent conditions for quasi-convexity in probabilistic mixtures of dual utilities and signed Choquet functions. As a consequence, although probabilistic risk aversion is quite different from the classic notion of strong risk aversion for generalized rank-dependent functions, these two notions coincide for dual utilities under an additional continuity assumption.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.