Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A hybrid Bayesian network for medical device risk assessment and management (2209.03352v1)

Published 7 Sep 2022 in cs.LG and cs.AI

Abstract: ISO 14971 is the primary standard used for medical device risk management. While it specifies the requirements for medical device risk management, it does not specify a particular method for performing risk management. Hence, medical device manufacturers are free to develop or use any appropriate methods for managing the risk of medical devices. The most commonly used methods, such as Fault Tree Analysis (FTA), are unable to provide a reasonable basis for computing risk estimates when there are limited or no historical data available or where there is second-order uncertainty about the data. In this paper, we present a novel method for medical device risk management using hybrid Bayesian networks (BNs) that resolves the limitations of classical methods such as FTA and incorporates relevant factors affecting the risk of medical devices. The proposed BN method is generic but can be instantiated on a system-by-system basis, and we apply it to a Defibrillator device to demonstrate the process involved for medical device risk management during production and post-production. The example is validated against real-world data.

Citations (7)

Summary

We haven't generated a summary for this paper yet.