Papers
Topics
Authors
Recent
2000 character limit reached

Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse Data using a Learning-based Unscented Kalman Filter

Published 7 Sep 2022 in cs.RO, cs.LG, cs.SY, and eess.SY | (2209.03210v3)

Abstract: Achieving highly accurate dynamic or simulator models that are close to the real robot can facilitate model-based controls (e.g., model predictive control or linear-quadradic regulators), model-based trajectory planning (e.g., trajectory optimization), and decrease the amount of learning time necessary for reinforcement learning methods. Thus, the objective of this work is to learn the residual errors between a dynamic and/or simulator model and the real robot. This is achieved using a neural network, where the parameters of a neural network are updated through an Unscented Kalman Filter (UKF) formulation. Using this method, we model these residual errors with only small amounts of data -- a necessity as we improve the simulator/dynamic model by learning directly from real-world operation. We demonstrate our method on robotic hardware (e.g., manipulator arm, and a wheeled robot), and show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.