2000 character limit reached
The signless Laplacian spectral radius of graphs without trees (2209.03120v1)
Published 7 Sep 2022 in math.CO
Abstract: Let $Q(G)=D(G)+A(G)$ be the signless Laplacian matrix of a simple graph of order $n$, where $D(G)$ and $A(G)$ are the degree diagonal matrix and the adjacency matrix of $G$, respectively. In this paper, we present a sharp upper bound for the signless spectral radius of $G$ without any tree and characterize all extremal graphs which attain the upper bound, which may be regarded as a spectral extremal version for the famous Erd\H{o}s-S\'{o}s conjecture.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.