Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sgap: Towards Efficient Sparse Tensor Algebra Compilation for GPU

Published 7 Sep 2022 in cs.DC and cs.PL | (2209.02882v3)

Abstract: Sparse compiler is a promising solution for sparse tensor algebra optimization. In compiler implementation, reduction in sparse-dense hybrid algebra plays a key role in performance. Though GPU provides various reduction semantics that can better utilize the parallel computing and memory bandwidth capacity, the central question is: how to elevate the flexible reduction semantics to sparse compilation theory that assumes serial execution. Specifically, we have to tackle two main challenges: (1) there are wasted parallelism by adopting static synchronization granularity (2) static reduction strategy limits optimization space exploration. We propose Sgap: segment group and atomic parallelism to solve these problems. Atomic parallelism captures the flexible reduction semantics to systematically analyze the optimization space of sparse-dense hybrid algebra on GPU. It is a new optimization technique beyond current compiler-based and open-source runtime libraries. Segment group elevates the flexible reduction semantics to suitable levels of abstraction in the sparse compilation theory. It adopts changeable group size and user-defined reduction strategy to solve challenge (1) and (2), respectively. Finally, we use GPU sparse matrix-matrix multiplication (SpMM) on the TACO compiler as a use case to demonstrate the effectiveness of segment group in reduction semantics elevation. We achieve up to 1.2x speedup over the original TACO's SpMM kernels. We also apply new optimization techniques found by atomic parallelism to an open-source state-of-the-art SpMM library dgSPARSE. We achieve 1.6x - 2.3x speedup on the algorithm tuned with atomic parallelism.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.