Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Periods, the meromorphic 3D-index and the Turaev--Viro invariant (2209.02843v1)

Published 6 Sep 2022 in math.GT and hep-th

Abstract: The 3D-index of Dimofte-Gaiotto-Gukov is an interesting collection of $q$-series with integer coefficients parametrised by a pair of integers and associated to a 3-manifold with torus boundary. In this note, we explain the structure of the asymptotic expansions of the 3D-index when $q=e{2\pi i\tau}$ and $\tau$ tends to zero (to all orders and with exponentially small terms included), and discover two phenomena: (a) when $\tau$ tends to zero on a ray near the positive real axis, the horizontal asymptotics of the meromorphic 3D-index match to all orders with the asymptotics of the Turaev-Viro invariant of a knot, in particular explaining the Volume Conjecture of Chen-Yang from first principles, (b) when $\tau \to 0$ on the positive imaginary axis, the vertical asymptotics of the 3D-index involves periods of a plane curve (the $A$-polynomial), as opposed to algebraic numbers, explaining some predictions of Hodgson-Kricker-Siejakowski and leading to conjectural identities between periods of the $A$-polynomial of a knot and integrals of the Euler beta-function.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.