Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Being Automated or Not? Risk Identification of Occupations with Graph Neural Networks (2209.02182v1)

Published 6 Sep 2022 in cs.CY and cs.NE

Abstract: The rapid advances in automation technologies, such as AI and robotics, pose an increasing risk of automation for occupations, with a likely significant impact on the labour market. Recent social-economic studies suggest that nearly 50\% of occupations are at high risk of being automated in the next decade. However, the lack of granular data and empirically informed models have limited the accuracy of these studies and made it challenging to predict which jobs will be automated. In this paper, we study the automation risk of occupations by performing a classification task between automated and non-automated occupations. The available information is 910 occupations' task statements, skills and interactions categorised by Standard Occupational Classification (SOC). To fully utilize this information, we propose a graph-based semi-supervised classification method named \textbf{A}utomated \textbf{O}ccupation \textbf{C}lassification based on \textbf{G}raph \textbf{C}onvolutional \textbf{N}etworks (\textbf{AOC-GCN}) to identify the automated risk for occupations. This model integrates a heterogeneous graph to capture occupations' local and global contexts. The results show that our proposed method outperforms the baseline models by considering the information of both internal features of occupations and their external interactions. This study could help policymakers identify potential automated occupations and support individuals' decision-making before entering the job market.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dawei Xu (10 papers)
  2. Haoran Yang (39 papers)
  3. Marian-Andrei Rizoiu (62 papers)
  4. Guandong Xu (93 papers)