Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Pre-trained Feature Networks for Generative Adversarial Networks in Audio-domain Loop Generation (2209.01751v1)

Published 5 Sep 2022 in cs.SD and eess.AS

Abstract: While generative adversarial networks (GANs) have been widely used in research on audio generation, the training of a GAN model is known to be unstable, time consuming, and data inefficient. Among the attempts to ameliorate the training process of GANs, the idea of Projected GAN emerges as an effective solution for GAN-based image generation, establishing the state-of-the-art in different image applications. The core idea is to use a pre-trained classifier to constrain the feature space of the discriminator to stabilize and improve GAN training. This paper investigates whether Projected GAN can similarly improve audio generation, by evaluating the performance of a StyleGAN2-based audio-domain loop generation model with and without using a pre-trained feature space in the discriminator. Moreover, we compare the performance of using a general versus domain-specific classifier as the pre-trained audio classifier. With experiments on both drum loop and synth loop generation, we show that a general audio classifier works better, and that with Projected GAN our loop generation models can converge around 5 times faster without performance degradation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.