Papers
Topics
Authors
Recent
Search
2000 character limit reached

Copula Entropy based Variable Selection for Survival Analysis

Published 4 Sep 2022 in stat.ME and cs.LG | (2209.01561v1)

Abstract: Variable selection is an important problem in statistics and machine learning. Copula Entropy (CE) is a mathematical concept for measuring statistical independence and has been applied to variable selection recently. In this paper we propose to apply the CE-based method for variable selection to survival analysis. The idea is to measure the correlation between variables and time-to-event with CE and then select variables according to their CE value. Experiments on simulated data and two real cancer data were conducted to compare the proposed method with two related methods: random survival forest and Lasso-Cox. Experimental results showed that the proposed method can select the 'right' variables out that are more interpretable and lead to better prediction performance.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.