Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-Free Deep Reinforcement Learning in Software-Defined Networks (2209.01490v1)

Published 3 Sep 2022 in cs.AI and cs.NI

Abstract: This paper compares two deep reinforcement learning approaches for cyber security in software defined networking. Neural Episodic Control to Deep Q-Network has been implemented and compared with that of Double Deep Q-Networks. The two algorithms are implemented in a format similar to that of a zero-sum game. A two-tailed T-test analysis is done on the two game results containing the amount of turns taken for the defender to win. Another comparison is done on the game scores of the agents in the respective games. The analysis is done to determine which algorithm is the best in game performer and whether there is a significant difference between them, demonstrating if one would have greater preference over the other. It was found that there is no significant statistical difference between the two approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.