Papers
Topics
Authors
Recent
Search
2000 character limit reached

Disconnected Emerging Knowledge Graph Oriented Inductive Link Prediction

Published 3 Sep 2022 in cs.LG | (2209.01397v1)

Abstract: Inductive link prediction (ILP) is to predict links for unseen entities in emerging knowledge graphs (KGs), considering the evolving nature of KGs. A more challenging scenario is that emerging KGs consist of only unseen entities, called as disconnected emerging KGs (DEKGs). Existing studies for DEKGs only focus on predicting enclosing links, i.e., predicting links inside the emerging KG. The bridging links, which carry the evolutionary information from the original KG to DEKG, have not been investigated by previous work so far. To fill in the gap, we propose a novel model entitled DEKG-ILP (Disconnected Emerging Knowledge Graph Oriented Inductive Link Prediction) that consists of the following two components. (1) The module CLRM (Contrastive Learning-based Relation-specific Feature Modeling) is developed to extract global relation-based semantic features that are shared between original KGs and DEKGs with a novel sampling strategy. (2) The module GSM (GNN-based Subgraph Modeling) is proposed to extract the local subgraph topological information around each link in KGs. The extensive experiments conducted on several benchmark datasets demonstrate that DEKG-ILP has obvious performance improvements compared with state-of-the-art methods for both enclosing and bridging link prediction. The source code is available online.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.