Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Bayesian Approach to Probabilistic Solar Irradiance Forecasting

Published 2 Sep 2022 in stat.AP, cs.SY, and eess.SY | (2209.00792v1)

Abstract: The output of solar power generation is significantly dependent on the available solar radiation. Thus, with the proliferation of PV generation in the modern power grid, forecasting of solar irradiance is vital for proper operation of the grid. To achieve an improved accuracy in prediction performance, this paper discusses a Bayesian treatment of probabilistic forecasting. The approach is demonstrated using publicly available data obtained from the Florida Automated Weather Network (FAWN). The algorithm is developed in Python and the results are compared with point forecasts, other probabilistic methods and actual field results obtained for the period.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.