Papers
Topics
Authors
Recent
2000 character limit reached

Generalized $k$-Center: Distinguishing Doubling and Highway Dimension

Published 1 Sep 2022 in cs.DS | (2209.00675v1)

Abstract: We consider generalizations of the $k$-Center problem in graphs of low doubling and highway dimension. For the Capacitated $k$-Supplier with Outliers (CkSwO) problem, we show an efficient parameterized approximation scheme (EPAS) when the parameters are $k$, the number of outliers and the doubling dimension of the supplier set. On the other hand, we show that for the Capacitated $k$-Center problem, which is a special case of CkSwO, obtaining a parameterized approximation scheme (PAS) is $\mathrm{W[1]}$-hard when the parameters are $k$, and the highway dimension. This is the first known example of a problem for which it is hard to obtain a PAS for highway dimension, while simultaneously admitting an EPAS for doubling dimension.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.