The de Rham cohomology of soft function algebras (2208.11431v1)
Abstract: We study the dg-algebra $\Omega \bullet_{A|\mathbb{R}}$ of algebraic de Rham forms of a real soft function algebra $A$, i.e., the algebra of global sections of a soft subsheaf of $C_X$, the sheaf of continuous functions on a space $X$. We obtain a canonical splitting $\mathrm H n (\Omega \bullet_{A|\mathbb{R}}) \cong \mathrm H n (X,\mathbb{R})\oplus V$, where $V$ is some vector space. In particular, we consider the cases $A=C(X)$ for $X$ a compact Hausdorff space and $A = C\infty (X)$ for $X$ a compact smooth manifold. For the algebra $\mathrm{PPol}K (|K|)$ of piecewise polynomial functions on a polyhedron $K$ the above splitting reduces to a canonical isomorphism $\mathrm H * (\Omega \bullet{\mathrm{PPol}K (|K|)|\mathbb{R}}) \cong \mathrm H * (|K|,\mathbb{R})$. We also prove that the algebraic de Rham cohomology $\mathrm H n (\Omega \bullet{C(X)|\mathbb{R}})$ is nontrivial for each $n\geq 1$ if $X$ is an infinite compact Hausdorff space.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.