Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resolving Matrix Spencer Conjecture Up to Poly-logarithmic Rank (2208.11286v2)

Published 24 Aug 2022 in cs.DS, cs.CC, cs.DM, and math.CO

Abstract: We give a simple proof of the matrix Spencer conjecture up to poly-logarithmic rank: given symmetric $d \times d$ matrices $A_1,\ldots,A_n$ each with $|A_i|{\mathsf{op}} \leq 1$ and rank at most $n/\log3 n$, one can efficiently find $\pm 1$ signs $x_1,\ldots,x_n$ such that their signed sum has spectral norm $|\sum{i=1}n x_i A_i|_{\mathsf{op}} = O(\sqrt{n})$. This result also implies a $\log n - \Omega( \log \log n)$ qubit lower bound for quantum random access codes encoding $n$ classical bits with advantage $\gg 1/\sqrt{n}$. Our proof uses the recent refinement of the non-commutative Khintchine inequality in [Bandeira, Boedihardjo, van Handel, 2022] for random matrices with correlated Gaussian entries.

Citations (9)

Summary

We haven't generated a summary for this paper yet.