Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Discrepancy from Quantum Communication (2110.10099v1)

Published 19 Oct 2021 in cs.DS, cs.CC, math.CO, and quant-ph

Abstract: We develop a novel connection between discrepancy minimization and (quantum) communication complexity. As an application, we resolve a substantial special case of the Matrix Spencer conjecture. In particular, we show that for every collection of symmetric $n \times n$ matrices $A_1,\ldots,A_n$ with $|A_i| \leq 1$ and $|A_i|F \leq n{1/4}$ there exist signs $x \in { \pm 1}n$ such that the maximum eigenvalue of $\sum{i \leq n} x_i A_i$ is at most $O(\sqrt n)$. We give a polynomial-time algorithm based on partial coloring and semidefinite programming to find such $x$. Our techniques open a new avenue to use tools from communication complexity and information theory to study discrepancy. The proof of our main result combines a simple compression scheme for transcripts of repeated (quantum) communication protocols with quantum state purification, the Holevo bound from quantum information, and tools from sketching and dimensionality reduction. Our approach also offers a promising avenue to resolve the Matrix Spencer conjecture completely -- we show it is implied by a natural conjecture in quantum communication complexity.

Citations (15)

Summary

We haven't generated a summary for this paper yet.