Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix discrepancy and the log-rank conjecture (2311.18524v1)

Published 30 Nov 2023 in math.CO and cs.CC

Abstract: Given an $m\times n$ binary matrix $M$ with $|M|=p\cdot mn$ (where $|M|$ denotes the number of 1 entries), define the discrepancy of $M$ as $\mbox{disc}(M)=\displaystyle\max_{X\subset [m], Y\subset [n]}\big||M[X\times Y]|-p|X|\cdot |Y|\big|$. Using semidefinite programming and spectral techniques, we prove that if $\mbox{rank}(M)\leq r$ and $p\leq 1/2$, then $$\mbox{disc}(M)\geq \Omega(mn)\cdot \min\left{p,\frac{p{1/2}}{\sqrt{r}}\right}.$$ We use this result to obtain a modest improvement of Lovett's best known upper bound on the log-rank conjecture. We prove that any $m\times n$ binary matrix $M$ of rank at most $r$ contains an $(m\cdot 2{-O(\sqrt{r})})\times (n\cdot 2{-O(\sqrt{r})})$ sized all-1 or all-0 submatrix, which implies that the deterministic communication complexity of any Boolean function of rank $r$ is at most $O(\sqrt{r})$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (6)
  1. D. Gavinsky and S. Lovett. En route to the log-rank conjecture: New reductions and equivalent formulations. Electronic Colloquium on Computational Complexity (ECCC’13) (2013) 20, 80.
  2. A. Grothendieck. Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. Sao Paulo, 8 (1953): 1–79.
  3. T. Lee and A. Shraibman. Around the log-rank conjecture. Israel Journal of Mathematics 256 (2023): 441–477.
  4. L. Lovász and M. Saks. Lattices, Möbius functions and communication complexity. Annual Symposium on Foundations of Computer Science (1988): 81–90.
  5. S. Lovett. Communication is Bounded by Root of Rank. Journal of the ACM, 63 (1) (2016): 1:1–1:9.
  6. N. Nisan and A. Wigderson. On rank vs. communication complexity. Proceedings of the 35rd Annual Symposium on Foundations of Computer Science (1994): 831–836.
Citations (6)

Summary

We haven't generated a summary for this paper yet.