Matrix discrepancy and the log-rank conjecture (2311.18524v1)
Abstract: Given an $m\times n$ binary matrix $M$ with $|M|=p\cdot mn$ (where $|M|$ denotes the number of 1 entries), define the discrepancy of $M$ as $\mbox{disc}(M)=\displaystyle\max_{X\subset [m], Y\subset [n]}\big||M[X\times Y]|-p|X|\cdot |Y|\big|$. Using semidefinite programming and spectral techniques, we prove that if $\mbox{rank}(M)\leq r$ and $p\leq 1/2$, then $$\mbox{disc}(M)\geq \Omega(mn)\cdot \min\left{p,\frac{p{1/2}}{\sqrt{r}}\right}.$$ We use this result to obtain a modest improvement of Lovett's best known upper bound on the log-rank conjecture. We prove that any $m\times n$ binary matrix $M$ of rank at most $r$ contains an $(m\cdot 2{-O(\sqrt{r})})\times (n\cdot 2{-O(\sqrt{r})})$ sized all-1 or all-0 submatrix, which implies that the deterministic communication complexity of any Boolean function of rank $r$ is at most $O(\sqrt{r})$.
- D. Gavinsky and S. Lovett. En route to the log-rank conjecture: New reductions and equivalent formulations. Electronic Colloquium on Computational Complexity (ECCC’13) (2013) 20, 80.
- A. Grothendieck. Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. Sao Paulo, 8 (1953): 1–79.
- T. Lee and A. Shraibman. Around the log-rank conjecture. Israel Journal of Mathematics 256 (2023): 441–477.
- L. Lovász and M. Saks. Lattices, Möbius functions and communication complexity. Annual Symposium on Foundations of Computer Science (1988): 81–90.
- S. Lovett. Communication is Bounded by Root of Rank. Journal of the ACM, 63 (1) (2016): 1:1–1:9.
- N. Nisan and A. Wigderson. On rank vs. communication complexity. Proceedings of the 35rd Annual Symposium on Foundations of Computer Science (1994): 831–836.