Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On symmetric Tetranacci polynomials in mathematics and physics (2208.10527v2)

Published 19 Aug 2022 in math-ph, cond-mat.mes-hall, math.CO, and math.MP

Abstract: In this manuscript, we introduce (symmetric) Tetranacci polynomials $\xi_j$ as a twofold generalization of ordinary Tetranacci numbers, by considering both non unity coefficients and generic initial values in their recursive definition. The issue of these polynomials arose in condensed matter physics and the diagonalization of symmetric Toeplitz matrices having in total four non-zero off diagonals. For the latter, the symmetric Tetranacci polynomials are the basic entities of the associated eigenvectors; thus, treating the recursive structure determines the eigenvalues as well. Subsequently, we present a complete closed form expression for any symmetric Tetranacci polynomial. The key feature is a decomposition in terms of generalized Fibonacci polynomials.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: