Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quantifying probabilistic robustness of tree-based classifiers against natural distortions (2208.10354v3)

Published 22 Aug 2022 in cs.LG

Abstract: The concept of trustworthy AI has gained widespread attention lately. One of the aspects relevant to trustworthy AI is robustness of ML models. In this study, we show how to probabilistically quantify robustness against naturally occurring distortions of input data for tree-based classifiers under the assumption that the natural distortions can be described by multivariate probability distributions that can be transformed to multivariate normal distributions. The idea is to extract the decision rules of a trained tree-based classifier, separate the feature space into non-overlapping regions and determine the probability that a data sample with distortion returns its predicted label. The approach is based on the recently introduced measure of real-world-robustness, which works for all black box classifiers, but is only an approximation and only works if the input dimension is not too high, whereas our proposed method gives an exact measure.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.