Papers
Topics
Authors
Recent
Search
2000 character limit reached

Testing robustness of predictions of trained classifiers against naturally occurring perturbations

Published 21 Apr 2022 in cs.LG | (2204.10046v2)

Abstract: Correctly quantifying the robustness of machine learning models is a central aspect in judging their suitability for specific tasks, and ultimately, for generating trust in them. We address the problem of finding the robustness of individual predictions. We show both theoretically and with empirical examples that a method based on counterfactuals that was previously proposed for this is insufficient, as it is not a valid metric for determining the robustness against perturbations that occur naturally'', outside specific adversarial attack scenarios. We propose a flexible approach that models possible perturbations in input data individually for each application. This is then combined with a probabilistic approach that computes the likelihood that areal-world'' perturbation will change a prediction, thus giving quantitative information of the robustness of individual predictions of the trained machine learning model. The method does not require access to the internals of the classifier and thus in principle works for any black-box model. It is, however, based on Monte-Carlo sampling and thus only suited for input spaces with small dimensions. We illustrate our approach on the Iris and the Ionosphere datasets, on an application predicting fog at an airport, and on analytically solvable cases.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.