Evaluating and Crafting Datasets Effective for Deep Learning With Data Maps (2208.10033v2)
Abstract: Rapid development in deep learning model construction has prompted an increased need for appropriate training data. The popularity of large datasets - sometimes known as "big data" - has diverted attention from assessing their quality. Training on large datasets often requires excessive system resources and an infeasible amount of time. Furthermore, the supervised machine learning process has yet to be fully automated: for supervised learning, large datasets require more time for manually labeling samples. We propose a method of curating smaller datasets with comparable out-of-distribution model accuracy after an initial training session using an appropriate distribution of samples classified by how difficult it is for a model to learn from them.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.