Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dispersed Pixel Perturbation-based Imperceptible Backdoor Trigger for Image Classifier Models (2208.09336v1)

Published 19 Aug 2022 in cs.CV and cs.AI

Abstract: Typical deep neural network (DNN) backdoor attacks are based on triggers embedded in inputs. Existing imperceptible triggers are computationally expensive or low in attack success. In this paper, we propose a new backdoor trigger, which is easy to generate, imperceptible, and highly effective. The new trigger is a uniformly randomly generated three-dimensional (3D) binary pattern that can be horizontally and/or vertically repeated and mirrored and superposed onto three-channel images for training a backdoored DNN model. Dispersed throughout an image, the new trigger produces weak perturbation to individual pixels, but collectively holds a strong recognizable pattern to train and activate the backdoor of the DNN. We also analytically reveal that the trigger is increasingly effective with the improving resolution of the images. Experiments are conducted using the ResNet-18 and MLP models on the MNIST, CIFAR-10, and BTSR datasets. In terms of imperceptibility, the new trigger outperforms existing triggers, such as BadNets, Trojaned NN, and Hidden Backdoor, by over an order of magnitude. The new trigger achieves an almost 100% attack success rate, only reduces the classification accuracy by less than 0.7%-2.4%, and invalidates the state-of-the-art defense techniques.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yulong Wang (58 papers)
  2. Minghui Zhao (21 papers)
  3. Shenghong Li (15 papers)
  4. Xin Yuan (198 papers)
  5. Wei Ni (115 papers)
Citations (13)