Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Invisible Backdoor Attack Based On Semantic Feature (2405.11551v1)

Published 19 May 2024 in cs.CV and cs.AI

Abstract: Backdoor attacks have severely threatened deep neural network (DNN) models in the past several years. These attacks can occur in almost every stage of the deep learning pipeline. Although the attacked model behaves normally on benign samples, it makes wrong predictions for samples containing triggers. However, most existing attacks use visible patterns (e.g., a patch or image transformations) as triggers, which are vulnerable to human inspection. In this paper, we propose a novel backdoor attack, making imperceptible changes. Concretely, our attack first utilizes the pre-trained victim model to extract low-level and high-level semantic features from clean images and generates trigger pattern associated with high-level features based on channel attention. Then, the encoder model generates poisoned images based on the trigger and extracted low-level semantic features without causing noticeable feature loss. We evaluate our attack on three prominent image classification DNN across three standard datasets. The results demonstrate that our attack achieves high attack success rates while maintaining robustness against backdoor defenses. Furthermore, we conduct extensive image similarity experiments to emphasize the stealthiness of our attack strategy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition and clustering,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2015. [Online]. Available: http://dx.doi.org/10.1109/cvpr.2015.7298682
  2. H.-R. Su, K.-Y. Chen, W. J. Wong, and S.-H. Lai, “A deep learning approach towards pore extraction for high-resolution fingerprint recognition,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar 2017. [Online]. Available: http://dx.doi.org/10.1109/icassp.2017.7952518
  3. J. Zhang, F. Li, Y. Feng, and H. Wu, “Autonomous unknown-application filtering and labeling for dl-based traffic classifier update,” Cornell University - arXiv,Cornell University - arXiv, Feb 2020.
  4. M. Lotfollahi, R. Zade, M. Siavoshani, and M. Saberian, “Deep packet: A novel approach for encrypted traffic classification using deep learning,” arXiv: Learning,arXiv: Learning, Sep 2017.
  5. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.
  6. P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models,” in Proceedings of the 10th ACM workshop on artificial intelligence and security, 2017, pp. 15–26.
  7. W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reliable attacks against black-box machine learning models,” arXiv preprint arXiv:1712.04248, 2017.
  8. M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li, “Manipulating machine learning: Poisoning attacks and countermeasures for regression learning,” in 2018 IEEE symposium on security and privacy (SP).   IEEE, 2018, pp. 19–35.
  9. T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating backdooring attacks on deep neural networks,” IEEE Access, p. 47230–47244, Jan 2019. [Online]. Available: http://dx.doi.org/10.1109/access.2019.2909068
  10. J. Zhang, C. Dongdong, Q. Huang, J. Liao, W. Zhang, H. Feng, G. Hua, and N. Yu, “Poison ink: Robust and invisible backdoor attack,” IEEE Transactions on Image Processing, p. 5691–5705, Jan 2022. [Online]. Available: http://dx.doi.org/10.1109/tip.2022.3201472
  11. S. Li, M. Xue, B. Z. H. Zhao, H. Zhu, and X. Zhang, “Invisible backdoor attacks on deep neural networks via steganography and regularization,” IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 5, pp. 2088–2105, 2020.
  12. Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang, “Trojaning attack on neural networks,” in Proceedings 2018 Network and Distributed System Security Symposium, Jan 2018. [Online]. Available: http://dx.doi.org/10.14722/ndss.2018.23291
  13. H. Zhong, C. Liao, A. C. Squicciarini, S. Zhu, and D. Miller, “Backdoor embedding in convolutional neural network models via invisible perturbation,” in Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy, 2020, pp. 97–108.
  14. K. Doan, Y. Lao, and P. Li, “Backdoor attack with imperceptible input and latent modification.”
  15. Y. Ren, L. Li, and J. Zhou, “Simtrojan: Stealthy backdoor attack,” in 2021 IEEE International Conference on Image Processing (ICIP), Sep 2021. [Online]. Available: http://dx.doi.org/10.1109/icip42928.2021.9506313
  16. Z. Zhao, X. Chen, Y. Xuan, Y. Dong, D. Wang, and K. Liang, “Defeat: Deep hidden feature backdoor attacks by imperceptible perturbation and latent representation constraints.”
  17. Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural backdoor attack on deep neural networks,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16.   Springer, 2020, pp. 182–199.
  18. S. Cheng, Y. Liu, S. Ma, and X. Zhang, “Deep feature space trojan attack of neural networks by controlled detoxification,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 2, 2021, pp. 1148–1156.
  19. A. Nguyen and A. Tran, “Wanet–imperceptible warping-based backdoor attack,” arXiv preprint arXiv:2102.10369, 2021.
  20. L. Itti and C. Koch, “Computational modelling of visual attention,” Nature Reviews Neuroscience, p. 194–203, Mar 2001. [Online]. Available: http://dx.doi.org/10.1038/35058500
  21. H. Larochelle and G. Hinton, “Learning to combine foveal glimpses with a third-order boltzmann machine,” Neural Information Processing Systems,Neural Information Processing Systems, Dec 2010.
  22. V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models of visual attention,” arXiv: Learning,arXiv: Learning, Jun 2014.
  23. M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial transformer networks,” Neural Information Processing Systems,Neural Information Processing Systems, Dec 2015.
  24. A. Miech, I. Laptev, and J. Sivic, “Learnable pooling with context gating for video classification,” Le Centre pour la Communication Scientifique Directe - HAL - Diderot,Le Centre pour la Communication Scientifique Directe - HAL - Diderot, Jun 2017.
  25. Y. Liu, Y. Xie, and A. Srivastava, “Neural trojans,” in 2017 IEEE International Conference on Computer Design (ICCD).   IEEE, 2017, pp. 45–48.
  26. B. G. Doan, E. Abbasnejad, and D. C. Ranasinghe, “Februus: Input purification defense against trojan attacks on deep neural network systems,” in Proceedings of the 36th Annual Computer Security Applications Conference, 2020, pp. 897–912.
  27. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in 2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017. [Online]. Available: http://dx.doi.org/10.1109/iccv.2017.74
  28. K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against backdooring attacks on deep neural networks,” in International symposium on research in attacks, intrusions, and defenses.   Springer, 2018, pp. 273–294.
  29. Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Neural attention distillation: Erasing backdoor triggers from deep neural networks,” arXiv preprint arXiv:2101.05930, 2021.
  30. B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in neural networks,” in 2019 IEEE Symposium on Security and Privacy (SP), May 2019. [Online]. Available: http://dx.doi.org/10.1109/sp.2019.00031
  31. A. Krizhevsky, “Learning multiple layers of features from tiny images,” Jan 2009.
  32. J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The german traffic sign recognition benchmark: A multi-class classification competition,” in The 2011 International Joint Conference on Neural Networks, Jul 2011. [Online]. Available: http://dx.doi.org/10.1109/ijcnn.2011.6033395
  33. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition.   Ieee, 2009, pp. 248–255.
  34. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  35. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.
  36. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  37. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in International conference on machine learning.   pmlr, 2015, pp. 448–456.
  38. S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint arXiv:1609.04747, 2016.
  39. Y. Feng, B. Ma, J. Zhang, S. Zhao, Y. Xia, and D. Tao, “Fiba: Frequency-injection based backdoor attack in medical image analysis.”
  40. X. Chen, C. Liu, B. Li, K. Lu, U. Berkeley, and A. Hannigan, “Targeted backdoor attacks on deep learning systems using data poisoning.”
  41. S. Baluja, “Hiding images in plain sight: deep steganography,” Neural Information Processing Systems,Neural Information Processing Systems, Dec 2017.
  42. M. Barni, K. Kallas, and B. Tondi, “A new backdoor attack in cnns by training set corruption without label poisoning,” in 2019 IEEE International Conference on Image Processing (ICIP).   IEEE, 2019, pp. 101–105.
  43. J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 2011–2023, Aug 2020. [Online]. Available: http://dx.doi.org/10.1109/tpami.2019.2913372
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Yangming Chen (1 paper)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets