Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CohortVA: A Visual Analytic System for Interactive Exploration of Cohorts based on Historical Data (2208.09237v1)

Published 19 Aug 2022 in cs.HC

Abstract: In history research, cohort analysis seeks to identify social structures and figure mobilities by studying the group-based behavior of historical figures. Prior works mainly employ automatic data mining approaches, lacking effective visual explanation. In this paper, we present CohortVA, an interactive visual analytic approach that enables historians to incorporate expertise and insight into the iterative exploration process. The kernel of CohortVA is a novel identification model that generates candidate cohorts and constructs cohort features by means of pre-built knowledge graphs constructed from large-scale history databases. We propose a set of coordinated views to illustrate identified cohorts and features coupled with historical events and figure profiles. Two case studies and interviews with historians demonstrate that CohortVA can greatly enhance the capabilities of cohort identifications, figure authentications, and hypothesis generation.

Citations (14)

Summary

We haven't generated a summary for this paper yet.