Embeddings among quantum affine $\mathfrak{sl}_n$ (2208.07803v1)
Abstract: We establish an explicit embedding of a quantum affine $\mathfrak{sl}n$ into a quantum affine $\mathfrak{sl}{n+1}$. This embedding serves as a common generalization of two natural, but seemingly unrelated, embeddings, one on the quantum affine Schur algebra level and the other on the non-quantum level. The embedding on the quantum affine Schur algebras is used extensively in the analysis of canonical bases of quantum affine $\mathfrak{sl}_n$ and $\mathfrak{gl}_n$. The embedding on the non-quantum level is used crucially in a work of Riche and Williamson on the study of modular representation theory of general linear groups over a finite field. The same embedding is also used in a work of Maksimau on the categorical representations of affine general linear algebras. We further provide a more natural compatibility statement of the embedding on the idempotent version with that on the quantum affine Schur algebra level. A $\mathfrak{gl}_n$-variant of the embedding is also established.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.