Discrete sets definable in strong expansions of ordered Abelian groups (2208.06929v5)
Abstract: We study the structure of infinite discrete sets D definable in expansions of ordered Abelian groups whose theories are strong and definably complete, with particular emphasis on the set D' comprised of differences between successive elements. In particular, if the burden of the structure is at most n, then the result of applying the operation taking D to D' n times must be a finite set (Theorem 1.1). In the case when the structure is densely ordered and has burden 2, we show that any definable unary discrete set must be definable in some elementary extension of the structure (R; <, +, Z) (Theorem 1.3).
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.