Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Higher structure maps for free resolutions of length 3 and linkage (2208.05934v3)

Published 11 Aug 2022 in math.AC

Abstract: Let $I$ be a perfect ideal of height 3 in a Gorenstein local ring $R$. Let $\mathbb{F}$ be the minimal free resolution of $I$. A sequence of linear maps, which generalize the multiplicative structure of $\mathbb{F}$, can be defined using the generic ring associated to the format of $\mathbb{F}$. Let $J$ be an ideal linked to $I$. We provide formulas to compute some of these maps for the free resolution of $J$ in terms of those of the free resolution of $I$. We apply our results to describe classes of licci ideals, showing that a perfect ideal with Betti numbers $(1,5,6,2)$ is licci if and only if at least one of these maps is nonzero modulo the maximal ideal of $R$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.