Papers
Topics
Authors
Recent
Search
2000 character limit reached

Massive MIMO Channel Prediction Using Machine Learning: Power of Domain Transformation

Published 9 Aug 2022 in cs.IT, eess.SP, and math.IT | (2208.04545v1)

Abstract: To compensate the loss from outdated channel state information in wideband massive multiple-input multipleoutput (MIMO) systems, channel prediction can be performed by leveraging the temporal correlation of wireless channels. Machine learning (ML)-based channel predictors for massive MIMO systems were designed recently; however, the time overhead to collect a large amount of training data directly affects the latency of the system. In this paper, we propose a novel ML-based channel prediction technique, which can reduce the time overhead to collect the training data by transforming the domain of channels from subcarrier to antenna in wideband massive MIMO systems. Numerical results show that the proposed technique can not only reduce the time overhead but also give additional performance gain compared to the ML-based channel prediction techniques without the domain transformation.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.