2000 character limit reached
The shapes of complementary subsurfaces to simple closed hyperbolic multi-geodesics
Published 8 Aug 2022 in math.GT and math.DS | (2208.04339v1)
Abstract: Cutting a hyperbolic surface X along a simple closed multi-geodesic results in a hyperbolic structure on the complementary subsurface. We study the distribution of the shapes of these subsurfaces in moduli space as boundary lengths go to infinity, showing that they equidistribute to the Kontsevich measure on a corresponding moduli space of metric ribbon graphs. In particular, random subsurfaces look like random ribbon graphs, a law which does not depend on the initial choice of X. This result strengthens Mirzakhani's famous simple closed multi-geodesic counting theorems for hyperbolic surfaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.