Randomized Optimal Stopping Problem in Continuous time and Reinforcement Learning Algorithm (2208.02409v3)
Abstract: In this paper, we study the optimal stopping problem in the so-called exploratory framework, in which the agent takes actions randomly conditioning on current state and an entropy-regularized term is added to the reward functional. Such a transformation reduces the optimal stopping problem to a standard optimal control problem. We derive the related HJB equation and prove its solvability. Furthermore, we give a convergence rate of policy iteration and the comparison to classical optimal stopping problem. Based on the theoretical analysis, a reinforcement learning algorithm is designed and numerical results are demonstrated for several models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.