Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generalized non-coprime graphs of groups

Published 3 Aug 2022 in math.GR and math.CO | (2208.01900v1)

Abstract: Let G be a finite group with identity e and H \neq {e} be a subgroup of G. The generalized non-coprime graph GAmma_{G,H} of G with respect to H is the simple undirected graph with G - {e }) as the vertex set and two distinct vertices a and b are adjacent if and only if \gcd(|a|,|b|) \neq 1 and either a \in H or b \in H, where |a| is the order of a\in G. In this paper, we study certain graph theoretical properties of generalized non-coprime graphs of finite groups, concentrating on cyclic groups. More specifically, we obtain necessary and sufficient conditions for the generalized non-coprime graph of a cyclic group to be in the class of stars, paths, cycles, triangle-free, complete bipartite, complete, unicycle, split, claw-free, chordal or perfect graphs. Then we show that widening the class of groups to all finite nilpotent groups gives us no new graphs, but we give as an example of contrasting behaviour the class of EPPO groups (those in which all elements have prime power order). We conclude with a connection to the Gruenberg--Kegel graph.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.