Stochastic homogenization with space-time ergodic divergence-free drift (2207.14555v1)
Abstract: We prove that diffusion equations with a space-time stationary and ergodic, divergence-free drift homogenize in law to a deterministic stochastic partial differential equation with Stratonovich transport noise. In the absence of spatial ergodicity, the drift is only partially absorbed into the skew-symmetric part of the flux through the use of an appropriately defined stream matrix. This leaves a time-dependent, spatially-homogenous transport which, for mildly decorrelating fields, converges to a Brownian noise with deterministic covariance in the homogenization limit. The results apply to uniformly elliptic, stationary and ergodic environments in which the drift admits a suitably defined stationary and $L2$-integrable stream matrix.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.