Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reconnection-powered fast radio transients from coalescing neutron star binaries (2207.14435v2)

Published 29 Jul 2022 in astro-ph.HE and gr-qc

Abstract: It is an open question whether and how gravitational wave events involving neutron stars can be preceded by electromagnetic counterparts. This work shows that the collision of two neutron stars with magnetic fields well below magnetar-level strengths can produce millisecond Fast-Radio-Burst-like transients. Using global force-free electrodynamics simulations, we demonstrate that electromagnetic flares, produced by overtwisted common flux tubes in the binary magnetosphere, collide with the orbital current sheet and compress it, resulting in enhanced magnetic reconnection. As a result, the current sheet fragments into a sequence of plasmoids, which collide with each other leading to the emission of coherent electromagnetic waves. The resulting millisecond-long burst of radiation should have frequencies in the range of $10-20\,\rm GHz$ for magnetic fields of $B{\ast}=10{11}\, \rm G$ at the stellar surfaces.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017a), arXiv:1710.05832 [gr-qc] .
  2. B. P. Abbott et al. (LIGO Scientific, Virgo), GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4⁢M⊙similar-toabsent3.4subscript𝑀direct-product\sim 3.4M_{\odot}∼ 3.4 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, Astrophys. J. Lett. 892, L3 (2020), arXiv:2001.01761 [astro-ph.HE] .
  3. M. M. Kasliwal et al., Illuminating Gravitational Waves: A Concordant Picture of Photons from a Neutron Star Merger, Science 358, 1559 (2017), arXiv:1710.05436 [astro-ph.HE] .
  4. R. Chornock et al., The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South, Astrophys. J. Lett. 848, L19 (2017), arXiv:1710.05454 [astro-ph.HE] .
  5. M. Nicholl et al., The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. III. Optical and UV Spectra of a Blue Kilonova From Fast Polar Ejecta, Astrophys. J. Lett. 848, L18 (2017), arXiv:1710.05456 [astro-ph.HE] .
  6. N. R. Tanvir et al., The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars, Astrophys. J. Lett. 848, L27 (2017), arXiv:1710.05455 [astro-ph.HE] .
  7. M. R. Drout et al., Light Curves of the Neutron Star Merger GW170817/SSS17a: Implications for R-Process Nucleosynthesis, Science 358, 1570 (2017), arXiv:1710.05443 [astro-ph.HE] .
  8. V. Savchenko et al., INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817, Astrophys. J. Lett. 848, L15 (2017), arXiv:1710.05449 [astro-ph.HE] .
  9. E. Troja et al., The X-ray counterpart to the gravitational wave event GW 170817, Nature 551, 71 (2017), arXiv:1710.05433 [astro-ph.HE] .
  10. R. Margutti et al., The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. V. Rising X-ray Emission from an Off-Axis Jet, Astrophys. J. Lett. 848, L20 (2017), arXiv:1710.05431 [astro-ph.HE] .
  11. R. Margutti et al., The Binary Neutron Star Event LIGO/Virgo GW170817 160 Days after Merger: Synchrotron Emission across the Electromagnetic Spectrum, Astrophys. J. Lett. 856, L18 (2018), arXiv:1801.03531 [astro-ph.HE] .
  12. A. Hajela et al., Two Years of Nonthermal Emission from the Binary Neutron Star Merger GW170817: Rapid Fading of the Jet Afterglow and First Constraints on the Kilonova Fastest Ejecta, Astrophys. J. Lett. 886, L17 (2019), arXiv:1909.06393 [astro-ph.HE] .
  13. G. Hallinan et al., A Radio Counterpart to a Neutron Star Merger, Science 358, 1579 (2017), arXiv:1710.05435 [astro-ph.HE] .
  14. K. D. Alexander et al., The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-Time Emission from the Kilonova Ejecta, Astrophys. J. Lett. 848, L21 (2017), arXiv:1710.05457 [astro-ph.HE] .
  15. G. Ghirlanda et al., Compact radio emission indicates a structured jet was produced by a binary neutron star merger, Science 363, 968 (2019), arXiv:1808.00469 [astro-ph.HE] .
  16. K. P. Mooley et al., A mildly relativistic wide-angle outflow in the neutron star merger GW170817, Nature 554, 207 (2018a), arXiv:1711.11573 [astro-ph.HE] .
  17. B. D. Metzger, Kilonovae, Living Rev. Rel. 23, 1 (2020), arXiv:1910.01617 [astro-ph.HE] .
  18. D. Radice, S. Bernuzzi, and A. Perego, The Dynamics of Binary Neutron Star Mergers and GW170817, Ann. Rev. Nucl. Part. Sci. 70, 95 (2020), arXiv:2002.03863 [astro-ph.HE] .
  19. S. Xiao et al., The quasi-periodically oscillating precursor of a long gamma-ray burst from a binary neutron star merger,   (2022), arXiv:2205.02186 [astro-ph.HE] .
  20. B. D. Metzger and C. Zivancev, Pair Fireball Precursors of Neutron Star Mergers, Mon. Not. Roy. Astron. Soc. 461, 4435 (2016), arXiv:1605.01060 [astro-ph.HE] .
  21. B. M. S. Hansen and M. Lyutikov, Radio and x-ray signatures of merging neutron stars, Mon. Not. Roy. Astron. Soc. 322, 695 (2001), arXiv:astro-ph/0003218 .
  22. M. Lyutikov, Electrodynamics of binary neutron star mergers, Mon. Not. Roy. Astron. Soc. 483, 2766 (2019), arXiv:1809.10478 [astro-ph.HE] .
  23. A. M. Beloborodov, Emission of Magnetar Bursts and Precursors of Neutron Star Mergers, Astrophys. J. 921, 92 (2021), arXiv:2011.07310 [astro-ph.HE] .
  24. F. Carrasco and M. Shibata, Magnetosphere of an orbiting neutron star, Phys. Rev. D 101, 063017 (2020), arXiv:2001.04210 [astro-ph.HE] .
  25. E. R. Most and A. A. Philippov, Electromagnetic precursors to gravitational wave events: Numerical simulations of flaring in pre-merger binary neutron star magnetospheres, Astrophys. J. Lett. 893, L6 (2020), arXiv:2001.06037 [astro-ph.HE] .
  26. E. R. Most and A. A. Philippov, Electromagnetic precursor flares from the late inspiral of neutron star binaries, Mon. Not. Roy. Astron. Soc. 515, 2710 (2022), arXiv:2205.09643 [astro-ph.HE] .
  27. A. Nathanail, A Toy Model for the Electromagnetic Output of Neutron-star Merger Prompt Collapse to a Black Hole: Magnetized Neutron-star Collisions 10.3847/1538-4357/ab7923 (2020), arXiv:2002.00687 [astro-ph.HE] .
  28. C. Palenzuela, Modeling magnetized neutron stars using resistive MHD, Mon. Not. Roy. Astron. Soc. 431, 1853 (2013), arXiv:1212.0130 [astro-ph.HE] .
  29. E. R. Most, A. Nathanail, and L. Rezzolla, Electromagnetic emission from blitzars and its impact on non-repeating fast radio bursts, Astrophys. J. 864, 117 (2018), arXiv:1801.05705 [astro-ph.HE] .
  30. A. Bransgrove, B. Ripperda, and A. Philippov, Magnetic Hair and Reconnection in Black Hole Magnetospheres, Phys. Rev. Lett. 127, 055101 (2021), arXiv:2109.14620 [astro-ph.HE] .
  31. V. Paschalidis, Z. B. Etienne, and S. L. Shapiro, General relativistic simulations of binary black hole-neutron stars: Precursor electromagnetic signals, Phys. Rev. D 88, 021504 (2013), arXiv:1304.1805 [astro-ph.HE] .
  32. F. Carrasco, M. Shibata, and O. Reula, Magnetospheres of black hole-neutron star binaries, Phys. Rev. D 104, 063004 (2021), arXiv:2106.09081 [astro-ph.HE] .
  33. Y. Lyubarsky, Fast Radio Bursts from Reconnection in a Magnetar Magnetosphere, Astrophys. J. 897, 1 (2020), arXiv:2001.02007 [astro-ph.HE] .
  34. A. L. Piro, Magnetic Interactions in Coalescing Neutron Star Binaries, Astrophys. J. 755, 80 (2012), arXiv:1205.6482 [astro-ph.HE] .
  35. D. Lai, DC Circuit Powered by Orbital Motion: Magnetic Interactions in Compact Object Binaries and Exoplanetary Systems, Astrophys. J. Lett. 757, L3 (2012), arXiv:1206.3723 [astro-ph.HE] .
  36. Y. Lyubarsky, Radio emission of the Crab and Crab-like pulsars, Mon. Not. Roy. Astron. Soc. 483, 1731 (2019), arXiv:1811.11122 [astro-ph.HE] .
  37. L. Bildsten and C. Cutler, Tidal interactions of inspiraling compact binaries, Astrophys. J. 400, 175 (1992).
  38. I. Pastor-Marazuela et al., A fast radio burst with sub-millisecond quasi-periodic structure,   (2022), arXiv:2202.08002 [astro-ph.HE] .
  39. N. F. Loureiro, A. A. Schekochihin, and S. C. Cowley, Instability of current sheets and formation of plasmoid chains, Phys. Plasmas 14, 100703 (2007), arXiv:astro-ph/0703631 .
  40. L. Sironi and A. Spitkovsky, Relativistic Reconnection: an Efficient Source of Non-Thermal Particles, Astrophys. J. Lett. 783, L21 (2014), arXiv:1401.5471 [astro-ph.HE] .
  41. J. W. T. Hessels et al., FRB 121102 Bursts Show Complex Time–Frequency Structure, Astrophys. J. Lett. 876, L23 (2019), arXiv:1811.10748 [astro-ph.HE] .
  42. A. Josephy et al., CHIME/FRB Detection of the Original Repeating Fast Radio Burst Source FRB 121102, Astrophys. J. Lett. 882, L18 (2019), arXiv:1906.11305 [astro-ph.HE] .
  43. E. Petroff, J. W. T. Hessels, and D. R. Lorimer, Fast radio bursts at the dawn of the 2020s, Astron. Astrophys. Rev. 30, 2 (2022), arXiv:2107.10113 [astro-ph.HE] .
  44. A. Weltman et al., Fundamental physics with the Square Kilometre Array, Publ. Astron. Soc. Austral. 37, e002 (2020), arXiv:1810.02680 [astro-ph.CO] .
  45. S. Sachdev et al., An Early-warning System for Electromagnetic Follow-up of Gravitational-wave Events, Astrophys. J. Lett. 905, L25 (2020), arXiv:2008.04288 [astro-ph.HE] .
  46. J. Towns et al., XSEDE: Accelerating Scientific Discovery, Comput. Sci. Eng. 16, 62 (2014).
  47. J. D. Hunter, Matplotlib: A 2d graphics environment, Computing in Science & Engineering 9, 90 (2007).
  48. P. Goldreich and W. H. Julian, Pulsar electrodynamics, Astrophys. J. 157, 869 (1969).
  49. C. Palenzuela, L. Lehner, and S. L. Liebling, Dual Jets from Binary Black Holes, Science 329, 927 (2010), arXiv:1005.1067 [astro-ph.HE] .
  50. K. Parfrey, A. M. Beloborodov, and L. Hui, Dynamics of Strongly Twisted Relativistic Magnetospheres, Astrophys. J. 774, 92 (2013), arXiv:1306.4335 [astro-ph.HE] .
  51. T. W. Baumgarte and S. L. Shapiro, General - relativistic MHD for the numerical construction of dynamical space - times, Astrophys. J. 585, 921 (2003), arXiv:astro-ph/0211340 .
  52. A. Spitkovsky, Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators, Astrophys. J. Lett. 648, L51 (2006), arXiv:astro-ph/0603147 .
  53. J. F. Mahlmann and M. A. Aloy, Diffusivity in force-free simulations of global magnetospheres, Mon. Not. Roy. Astron. Soc. 509, 1504 (2021), arXiv:2109.13936 [astro-ph.HE] .
  54. J. Li, A. Spitkovsky, and A. Tchekhovskoy, Resistive Solutions for Pulsar Magnetospheres, Astrophys. J. 746, 60 (2012), arXiv:1107.0979 [astro-ph.HE] .
  55. P. McCorquodale and P. Colella, A high-order finite-volume method for conservation laws on locally refined grids, Communications in Applied Mathematics and Computational Science 6, 1 (2011).
  56. V. V. Rusanov, Calculation of Interaction of Non–Steady Shock Waves with Obstacles, J. Comput. Math. Phys. USSR 1, 267 (1961).
  57. A. M. Beloborodov, Monster radiative shocks in the perturbed magnetospheres of neutron stars, arXiv e-prints , arXiv:2210.13509 (2022a), arXiv:2210.13509 [astro-ph.HE] .
  58. A. M. Beloborodov, Scattering of Ultrastrong Electromagnetic Waves by Magnetized Particles, Phys. Rev. Lett.  128, 255003 (2022b), arXiv:2108.05464 [astro-ph.HE] .
  59. V. S. Beskin, I. V. Kuznetsova, and R. R. Rafikov, On the MHD effects on the force-free monopole outflow, Mon. Not. Roy. Astron. Soc. 299, 341 (1998).
  60. Y. Lyubarsky and J. G. Kirk, Reconnection in a Striped Pulsar Wind, Astrophys. J.  547, 437 (2001), arXiv:astro-ph/0009270 [astro-ph] .
Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.