Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Repeated Environment Inference for Invariant Learning (2207.12876v2)

Published 26 Jul 2022 in cs.LG

Abstract: We study the problem of invariant learning when the environment labels are unknown. We focus on the invariant representation notion when the Bayes optimal conditional label distribution is the same across different environments. Previous work conducts Environment Inference (EI) by maximizing the penalty term from Invariant Risk Minimization (IRM) framework. The EI step uses a reference model which focuses on spurious correlations to efficiently reach a good environment partition. However, it is not clear how to find such a reference model. In this work, we propose to repeat the EI process and retrain an ERM model on the \textit{majority} environment inferred by the previous EI step. Under mild assumptions, we find that this iterative process helps learn a representation capturing the spurious correlation better than the single step. This results in better Environment Inference and better Invariant Learning. We show that this method outperforms baselines on both synthetic and real-world datasets.

Summary

We haven't generated a summary for this paper yet.