Internal boundaries of the loop amplituhedron (2207.12464v2)
Abstract: The strict definition of positive geometry implies that all maximal residues of its canonical form are $\pm 1$. We observe, however, that the loop integrand of the amplitude in planar $\mathcal{N}=4$ super Yang-Mills has maximal residues not equal to $\pm 1$. We find the reason for this is that deep in the boundary structure of the loop amplituhedron there are geometries which contain internal boundaries: codimension one defects separating two regions of opposite orientation. This phenomenon requires a generalisation of the concept of positive geometry and canonical form to include such internal boundaries and also suggests the utility of a further generalisation to `weighted positive geometries'. We re-examine the deepest cut of $\mathcal{N}=4$ amplitudes in light of this and obtain new all order residues.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.