Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Differential testing for machine learning: an analysis for classification algorithms beyond deep learning (2207.11976v1)

Published 25 Jul 2022 in cs.SE and cs.LG

Abstract: Context: Differential testing is a useful approach that uses different implementations of the same algorithms and compares the results for software testing. In recent years, this approach was successfully used for test campaigns of deep learning frameworks. Objective: There is little knowledge on the application of differential testing beyond deep learning. Within this article, we want to close this gap for classification algorithms. Method: We conduct a case study using Scikit-learn, Weka, Spark MLlib, and Caret in which we identify the potential of differential testing by considering which algorithms are available in multiple frameworks, the feasibility by identifying pairs of algorithms that should exhibit the same behavior, and the effectiveness by executing tests for the identified pairs and analyzing the deviations. Results: While we found a large potential for popular algorithms, the feasibility seems limited because often it is not possible to determine configurations that are the same in other frameworks. The execution of the feasible tests revealed that there is a large amount of deviations for the scores and classes. Only a lenient approach based on statistical significance of classes does not lead to a huge amount of test failures. Conclusions: The potential of differential testing beyond deep learning seems limited for research into the quality of machine learning libraries. Practitioners may still use the approach if they have deep knowledge about implementations, especially if a coarse oracle that only considers significant differences of classes is sufficient.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.