Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dirac geometry I: Commutative algebra

Published 19 Jul 2022 in math.NT, math.AG, and math.AT | (2207.09256v4)

Abstract: The homotopy groups of a commutative algebra in spectra form a commutative algebra in the symmetric monoidal category of graded abelian groups. The grading and the Koszul sign rule are remnants of the structure encoded by anima as opposed to sets. The purpose of this paper and its sequel is to develop the geometry built from such algebras. We name this geometry Dirac geometry, since the grading exhibits the hallmarks of spin. Indeed, it is a reflection of the internal structure encoded by anima, and it distinguishes symmetric and anti-symmetric behavior, as does spin. Moreover, the coherent cohomology, which we develop in the sequel admits half-integer Serre twists.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.