Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconfigurable Plug-and-play Distributed Model Predictive Control for Reference Tracking (2207.09233v2)

Published 19 Jul 2022 in eess.SY and cs.SY

Abstract: A plug-and-play model predictive control (PnP MPC) scheme is proposed for varying-topology networks to track piecewise constant references. The proposed scheme allows subsystems to occasionally join and leave the network while preserving asymptotic stability and recursive feasibility and comprises two main phases. In the redesign phase, passivity-based control is used to ensure that asymptotic stability of the network is preserved. In the transition phase, reconfigurable terminal ingredients are used to ensure that the distributed MPC problem is initially feasible after the PnP operation. The efficacy of the proposed scheme is evaluated by applying it to a network of mass-spring-damper systems and comparing it to a benchmark scheme. It is found that the novel redesign phase results in faster PnP operations, whereas the novel transition phase increases flexibility by accepting more requests.

Citations (2)

Summary

We haven't generated a summary for this paper yet.